10. M. R. Romanovskii, "On uniqueness in determining the heat-transfer coefficient and the ambient temperature," Methods and Facilities of Machine Diagnosis of Gas Turbine Engines and Their Elements [in Russian], Kharkov Aviat. Inst., Kharkov, 2, 59-60 (1980).
11. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Incorrect Problems [in Russian], Nauka, Moscow (1979).
12. M. R. Romanovskii, "On regularization of inverse problems," Teplofiz. Vys, Temp., 18 , No. 1, 152-157 (1980).
13. V. B. Glasko, M. V. Zakharov, and A. Ya. Kolp, "On restoration of the heat flux to a body surface for a nonlinear heat-conduction process on the basis of the regularization method," Inzh.-Fiz. Zh., 29, No. 1, 60-62 (1975).
14. P. N. Zaikin and S. P. Kandaurov, "Principle of minimal corrections in nonlinear problems of interpretation," Processing and Interpretation of Physical Experiments [in Russian], No. 3, Moscow State Univ. (1975), pp. 95-104.
15. V. K. Ivanov, "On the approximate solution of operator equations of the first kind," Zh . Vychisl. Mat. Mat. Fiz., 6, No. 6, 1089-1093 (1966).
16. A. V. Goncharskii, A. S. Leonov, and A. G. Yagola, "On a regularizing algorithm of incorrectly formulated problems with approximately given operator," Zh. Vyschisl. Mat. Mat, Fiz., 12, No. 6, 1592-1594 (1972).
17. M. R. Romanovskii, "Regularization of inverse problems by the scheme of partial matching with elements of a set of observations," Inzh.-Fiz. Zh., 42, No. 1, 110-118 (1982).
18. J. H. Ahlberg, E. Nielsen, and J. Walsh, Theory of Splines and Their Applications, Academic Press (1967).

SOLUTION OF THE HYPERBOLIC HEAT-CONDUCTION EQUATION

BY EXPANSION IN A SMALL PARAMETER
A. V. Finkel'shtein

UDC 536.24 .02

A method of finding the solution of the hyperbolic heat-conduction equation as a power series of a small parameter (the relaxation time) is discussed.

In the hyperbolic heat-conduction equation [1]

$$
\begin{equation*}
\frac{\partial T}{\partial \tau}+\tau_{T} \frac{\partial^{2} T}{\partial \tau^{2}}=a \frac{\partial^{2} T}{\partial x^{2}} \tag{1}
\end{equation*}
$$

the relaxation time τ_{r} is small. For example in aluminum $\tau_{r}=10^{-11} \mathrm{sec}$. Hence, one can consider (1) as an equation of a small parameter $\varepsilon=\tau_{r} / \tau_{0}$ and use asymptotic methods for its analysis and solution [2, 3].

We consider (1) (written in dimensionless form) for the following initial and boundary conditions:

$$
\begin{gather*}
T(x, 0)=\theta_{0}(x), \frac{\partial T(x, 0)}{\partial \tau}=\theta_{1}(x) \tag{2}\\
\beta_{i 1} \frac{\partial T((i-1) l, \tau)}{\partial x}+(-1)^{i} \beta_{i 2} T((i-1) l, \tau)=\varphi_{i}(\tau), i=1,2 \tag{3}
\end{gather*}
$$

where depending on the type of boundary condition, the constants $\beta_{i 1}, \beta_{i z}$ are either equal to zero or correspond to the appropriate thermal constants.

Because (1) has the small parameter ε as a coefficient of the higher-order derivative, a power series expansion of the solution in ε must contain boundary-layer type terms depend-

Scientific-Industrial Union, "Tekhenergokhimprom," Mineral Fertilizer Industry, Moscow. Translated from Inzhernerno-Fizicheskii Zhurnal, Vo1. 44, No. 5, pp. 809-814, May, 1983. Original article submitted January $26,1982$.
ing on the variable $\eta=\tau / \varepsilon$ [4]. We look for an approximate solution $T_{\varepsilon}(x, \tau)$ in the form

$$
\begin{equation*}
T_{\varepsilon}(x, \tau)=T_{0}(x, \tau)+\varepsilon T_{1}(x, \tau)+\varepsilon^{2} T_{2}(x, \tau)+\ldots+\Pi_{0}(x, \eta)+\varepsilon \Pi_{1}(x, \eta)+\ldots \tag{4}
\end{equation*}
$$

Substituting (4) into (1)-(3) and equating the coefficients of identical powers of ε, we obtain the following family of boundary-value problems:

$$
\begin{gather*}
\frac{\partial T_{0}}{\partial \tau}=\mathrm{Fo} \frac{\partial^{2} T_{0}}{\partial x^{2}}, \\
T_{0}(x, 0)=\theta_{0}(x)-\pi_{0}(x), \Gamma\left[T_{0}\right]=\varphi(\tau), \varphi(\tau)=\left(\varphi_{1}(\tau), \varphi_{2}(\tau)\right) ; \\
\frac{\partial T_{k}}{\partial \tau}=\mathrm{F}_{0} \frac{\partial^{2} T_{k}}{\partial x^{2}}-\frac{\partial^{2} T_{k-1}}{\partial \tau^{2}}, k=1,2, \ldots, \tag{6}\\
T_{k}(x, 0)=0, \Gamma\left[T_{k}\right]=0 ; \\
\frac{\partial \Pi_{0}}{\partial \eta}+\frac{山^{2} \Pi_{0}}{\partial \eta^{2}}=0, \\
\Pi_{0}(x, 0)=\pi_{0}(x), \frac{\partial \Pi_{0}(x, 0)}{\partial \eta}={ }_{2} ; \tag{7}\\
-\frac{\partial \Pi_{k}}{\partial \eta}+\frac{\partial^{2} \Pi_{k}}{\partial \eta^{2}}=\mathrm{Fo} \frac{\partial^{2} \Pi_{k-1}}{\partial x^{2}}, k=1,2, \ldots, \\
\Pi_{k}(x, 0)=0, \frac{\partial \Pi_{k}(x, 0)}{\partial \eta}=h_{k}(x), \tag{8}\\
h_{1}(x)=\theta_{1}(x)-\frac{\left[\partial T_{0}(x, 0)\right.}{\partial \tau}, h_{k}(x)=-\frac{\partial T_{k-1}(x, 0)}{\partial \tau}, k \geqslant 2 . \tag{9}
\end{gather*}
$$

where Γ is the operator corresponding to the boundary conditions (3). The function $\pi_{0}(x)$ is an arbitrary smooth function such that $\Gamma\left[\pi_{0}\right]=0$. Thus, the coefficients in expansion (4) can be found if we can solve the boundary-value problems (5)-(8) subject to condition (9).

We assume that $\varphi_{1}(\tau), \varphi_{2}(\tau)$ are differentiable the required number of times. The solution of the boundary-value problem (5) is written in the form

$$
T_{0}(x, \tau)=a(x) \varphi_{1}(\tau)+b(x) \varphi_{2}(\tau)+u(x, \tau),
$$

where $a(x)$ and $b(x)$ are smooth functions (linear for boundary conditions of types I and III) which satisfy the relations

$$
\begin{aligned}
& \beta_{11} a^{\prime}(0)-\beta_{12} a(0)=1, \beta_{11} b^{\prime}(0)-\beta_{12} b(0)=0, \\
& \beta_{21} a^{\prime}(l)+\beta_{22} a(l)=0, \beta_{21} b^{\prime}(l)+\beta_{22} b(l)=1 .
\end{aligned}
$$

The function $u(x, \tau)$ satisfies the following equation with homogeneous boundary conditions:

$$
\begin{gather*}
\frac{\partial u}{\partial \tau}=\mathrm{Fo} \frac{\partial^{2} u}{\partial x^{2}}+F(x, \tau), \tag{10}\\
u(x, 0)=u_{0}(x), \\
\Gamma[u]=0, \\
F(x, \tau)=\mathrm{Fo}\left(a^{\prime \prime}(x) \varphi_{1}(\tau)+b^{\prime \prime}(x) \varphi_{2}(\tau)\right)-a(x) \varphi_{1}^{\prime}(\tau)-b(x) \varphi_{2}^{\prime}(\tau), \\
u_{0}(x)=\theta_{0}(x)-\pi_{0}(x)-a(x) \varphi_{1}(0)-b(x) \varphi_{2}(0) .
\end{gather*}
$$

The solution of (10) can be written in the form [5]

$$
\begin{equation*}
u(x, \tau)=\sum_{n=1}^{\infty}\left\{u_{n} \exp \left(-1 \lambda_{n}^{2} \tau\right)+\int_{0}^{\tau} f_{n}(s) \exp \left[-\lambda_{n}^{2}(\tau-s)\right] d s\right\} X_{n}(x) \tag{11}
\end{equation*}
$$

where $\left\{\lambda_{n}^{2}\right\}$ and $\left\{X_{n}(x)\right\}$ are the eigenvalues and eigenfunctions of the differential operator $\partial^{2} / \partial x^{2}$ with homogeneous boundary conditions, and $\left\{u_{n}\right\}$ and $\left\{f_{n}(\tau)\right\}$ are the Fourier coefficients of the functions $u_{0}(x)$ and $F(x, \tau)$:

$$
u_{n}=\int_{0}^{l} u_{0}(x) X_{n}(x) d x, f_{n}(\tau)=\int_{0}^{l} F(x, \tau) X_{n}(x) d x
$$

We assume that the initial conditions of (5) are such that one can calculate the required derivatives of $T_{0}(x, \tau)$ by termwise differentiation of the series (11). Substituting the expression for $\partial^{2} T_{o} / \partial \tau^{2}$ into (6) for $k=1$, we obtain a boundary-value problem for $T_{1} \times$ (x, τ). This probiem is of the form (10) in which $u_{0}(x)=0, F(x, \tau)=\partial^{2} T_{0} / \partial \tau^{2}$. Hence, $T_{1}(x, \tau)$ can be calculated using (11). The higher-order functions $T_{2}(x, \tau), T_{3}(x, \tau), \ldots$ are calculated recursively with the help of (11).

We consider in detail a type I boundary-value problem for the heat-conduction equation (1). We take the case of homogeneous boundary conditions

$$
T(0, \tau)=T(l, \tau)=0
$$

and we further put $\pi_{0}(x) \equiv 0$. The solution of (5) in this case is [6]

$$
\begin{gather*}
T_{0}(x, \tau)=\sum_{n=1}^{\infty} c_{n} \exp \left[-\left(\frac{\pi n}{l}\right)^{2} \text { Fo } \tau\right] \sin \frac{\pi n}{l} x \tag{12}\\
c_{n}=\frac{2}{l} \int_{0}^{l} \theta_{0}(\xi) \sin \frac{\pi n}{l} \xi d \xi
\end{gather*}
$$

Differentiating (12) twice with respect to τ and substituting the result into (6) for $k=1$, we find, solving the inhomogeneous equation

$$
\begin{equation*}
T_{1}(x, \tau)=-\tau \sum_{n=1}^{\infty} c_{n}\left(\frac{\pi n}{l}\right)^{4} \mathrm{Fo}^{2} \exp \left[-\left(\frac{\pi n}{l}\right)^{2} \mathrm{Fo} \tau\right] \sin \frac{\pi n}{l} x=-\tau \frac{\partial^{2} T_{0}}{\partial \tau^{2}} \tag{13}
\end{equation*}
$$

Similarly it is straightforward to find $T_{2}(x, \tau), T_{3}(x, \tau)$:

$$
\begin{gather*}
T_{2}(x, \tau)=2 \tau \frac{\partial^{3} T_{0}}{\partial \tau^{3}}+\frac{\tau^{2}}{2} \frac{\partial^{4} T_{0}}{\partial \tau^{4}}, \\
T_{3}(x, \tau)=-5 \tau \frac{\partial^{4} T_{0}}{\partial \tau^{4}}-2 \tau^{2} \frac{\partial^{5} T_{0}}{\partial \tau^{5}}-\frac{\tau^{3}}{6} \frac{\partial^{6} T_{0}}{\partial \tau^{6}} . \tag{14}
\end{gather*}
$$

The form of (13), (14) shows that functions $T_{k}(x, \tau)$ for $k \geqslant 1$ can be sought in the form

$$
\begin{equation*}
T_{k}=\Phi_{k} T_{0}, \Phi_{k}^{*}=(-1)^{k} \sum_{i=1}^{k} A_{i}^{(k)} \tau^{i} \frac{\partial^{k+i}}{\partial \tau^{k+i}} \tag{15}
\end{equation*}
$$

where the $A_{i}(k)$ are found by the method of undetermined multipliers after substitution of (15) into (6).

Recursion relations for the $A_{i}(k+1)$ for some values of i are:

$$
A_{1}^{(k+1)}=2 A_{1}^{(k)}, A_{2}^{(k+-1)}=\frac{1}{2} A_{1}^{(k)}+A_{2}^{(k)}+3 A_{3}^{(k)}, \cdots, A_{k+1}^{(k+1)}=\frac{1}{k+1} A_{k}^{(k)}
$$

The above method of solving (6) based on (15) is useful not only for type I boundary conditions but also for general boundary conditions given by the operator Γ when the functions on the right-hand side (φ_{1} and φ_{2},) are independent of τ.

We now determine the coefficients of the singular part of the expansion (4). Solving the boundary-value problem (7), we obtain

$$
\begin{equation*}
\Pi_{0}(x)=\pi_{0}(x) \equiv 0 \tag{16}
\end{equation*}
$$

With the help of the method of variation of parameters, the solution of the boundary-value problem (8) is written as

$$
\begin{equation*}
\Pi_{k}(x, \eta)=[1-\exp (-\eta)] h_{k}(x)+\mathrm{Fo} \int_{0}^{\eta}[1-\exp (s-\eta)] \frac{\partial^{2} \Pi_{k-1}(x, s)}{\partial x^{2}} d s \tag{17}
\end{equation*}
$$

From (17) it is straightforward to obtain

$$
\begin{gather*}
\Pi_{1}(x, \eta)=[1-\exp (-\eta)] h_{1}(x), \Pi_{2}(x, \eta)=[1-\exp (-\eta)] h_{2}(x)+F_{0}[\eta-2+(\eta+2) \exp (-\eta)] h_{1}^{\prime \prime}(x) \tag{18}\\
\Pi_{3}(x, \eta)=[1-\exp (-\eta)] h_{3}(x)+\mathrm{Fo}_{0}[\eta-2+(\eta+2) \exp (-\eta)] h_{2}^{\prime \prime}(x)+ \\
+\mathrm{Fo}^{2}\left[\frac{\eta^{2}}{2}-3 \eta+6-\left(\frac{\eta^{2}}{2}+3 \eta+6\right) \exp (-\eta)\right] h_{1}^{(\mathrm{IV})}(x)
\end{gather*}
$$

which shows that $\Pi_{k}(n, \eta)$ can be sought in the form

$$
\begin{align*}
& \left.\quad \Pi_{k}(x, \eta)=[1-\exp (-\eta)] h_{k}(x)+\mathrm{Fo}_{\mathrm{l}} \eta-2+(\eta+2) \exp (-\eta)\right] h_{k-1}^{\prime \prime}(x)+ \\
& \quad+\mathrm{Fo}^{2}\left[\frac{\eta^{2}}{2}-3 \eta+6-\left(\frac{\eta^{2}}{2}+3 \eta+6\right) \exp (-\eta)\right] h_{k-2}^{(\mathrm{IV})}+\ldots \tag{19}\\
& \ldots+\mathrm{Fo}^{k-1} h_{1}^{(2 k-2)}(x)\left[B_{k-1}^{(k)} \eta^{k-1}+\ldots+B_{0}^{(k)}+\left(C_{k-1}^{(k)} \eta^{k-1}+\ldots+C_{0}^{(k)}\right) \exp (-\eta)\right]
\end{align*}
$$

and the coefficients $B_{k-1}^{(k)}, \ldots, B_{0}^{(k)}, C_{k \rightarrow i}^{(k)}, \ldots, C_{0}^{(k)}$ are determined recursively in terms of the corresponding coefficients with superscript ($k-1$) using the method of undetermined multipliers after substitution of (19) into (17).

Thus, for the case of boundary conditions given by the operator Γ with right-hand sides independent of τ, the functions $T_{k}(x, \tau)$ and $\Pi_{k}(x, \tau), k=1,2, \ldots$, are determined in terms of derivatives of $T_{0}(x, \tau)$. The series (4) together with (15), (16), and (19) represents a formal expansion of the solution of the hyperbolic heat-conduction equation. Questions on the convergence of this series require further study, but (4) with a finite number of terms can serve as a good approximation to the exact solution of the hyperbolic equation.

As an example, we consider the transfer of heat in a semiinfinite medium when the heat propagation speed is finite [1].

Equation (1) $\left(\tau_{r}:=\varepsilon\right)$ is to be solved subject to the boundary conditions

$$
\begin{equation*}
T(x, 0)=\partial T(x, 0) / \partial \tau=0, T(0, \tau)=1 \tag{20}
\end{equation*}
$$

The solution of (5) for this case is

$$
T_{0}(x, \tau)=1-\frac{2}{\sqrt{\pi}} \int_{0}^{x /(2 \sqrt{a \tau)}} \exp \left(-s^{2}\right) d s
$$

Calculating $\partial^{2} T_{0} / \partial \tau^{2}$ we find the function $T_{1}(x, \tau)$ from (15). We than have the first approximation $T_{E}(x, \tau)$ to the solution of the hyperbolic heat-conduction equation (1) with boundary conditions (20):

$$
T_{\varepsilon 1}(x, \tau)=T_{0}(x, \tau)+\frac{x \varepsilon}{2 \sqrt{\pi a} \tau^{3 / 2}}\left(\frac{3}{2}-\frac{x^{2}}{4 a \tau}\right) \exp \left(-\frac{x^{2}}{4 a \tau}\right)
$$

Calculation of the derivatives of $\partial^{3} T_{0} / \partial \tau^{3}$ and $\partial^{4} T_{0} / \partial \tau^{4}$ allows us to obtain $T_{2}(x, \tau)$ and the second approximation $T_{\varepsilon 2}(x, \tau)$:

Fig. 1. Comparison of the ε dependence of the solution T_{0} of the parabolic heat-conduction equation (curve 1), the exact solution of the hyperbolic heat-conduction equation (curve 2), the approximations $T_{\varepsilon_{1}}$ (curve 3) and $T_{\varepsilon_{2}}$ (curve 4) for different values of τ. The solid curves refer to $\tau=2 \varepsilon$, the dashed curves to $\tau=5 \varepsilon$.

$$
\begin{aligned}
& T_{\mathrm{e} 2}(x, \tau)=T_{0}(x, \tau)+\frac{x \varepsilon}{2 \sqrt{\pi a} \tau^{3 / 2}}\left(\frac{3}{2}-\frac{x^{2}}{4 a \tau}\right) \exp \left(-\frac{x^{2}}{4 a \tau}\right)+ \\
& +\frac{x \varepsilon^{2}}{2 \bigvee \sqrt{\pi a} \tau^{5 / 2}}\left[\frac{1}{2}\left(\frac{x^{2}}{4 a \tau}\right)^{3}-2\left(\frac{x^{2}}{4 a \tau}\right)^{2}+5 \frac{x^{2}}{4 a \tau}-\frac{15}{8}\right] \exp \left(-\frac{x^{2}}{4 a \tau}\right) .
\end{aligned}
$$

We compare the approximations $T_{\varepsilon_{1}}(x, \tau)$ and $T_{\varepsilon_{2}}(x, \tau)$ with the exact solution of problem (1), (20) given in [1]. Putting $\xi=x / \sqrt{\alpha \varepsilon}$, we note that for $\xi>\tau / \varepsilon$ we have $T(x, \tau)=0$. The calculations show that for $\tau / \varepsilon<1$ the functions $T_{\varepsilon I}$ and $T_{\varepsilon_{2}}$ poorly approximate the exact soIution the exact solution T. For $\tau / \varepsilon=1, \xi \leqslant I$ the function $T_{\varepsilon 2}$ more closely approximates T, while the function $T_{\varepsilon 1}$ less closely approximates T in comparison with T_{0}. For $\tau / \varepsilon \geqslant 10$ differences in the functions $T, T_{0}, T_{\varepsilon}, T_{\varepsilon_{2}}$ are small for all values of ξ. In Fig. 1 , the dependence of $T, T_{0}, T_{\varepsilon_{1}}, T_{\varepsilon_{2}}$ on ξ is shown for $\tau / \varepsilon=2$ and $\tau / \varepsilon=5$.

Hence analysis of the approximation $T_{\varepsilon 2}$ and $T_{\varepsilon 2}$ show that in the calculation of the temperature field in a semiinfinite medium, for $\tau \geqslant \varepsilon, \xi<\tau / \varepsilon$ the formulas obtained by the small parameter method result in a good approximation to the exact solution of the hyperbolic heat-conduction equation.

NOTATION

T, temperature; τ, time; x, coordinate; τ_{0}, time scale; a, thermal diffuxivity; \imath, layer thickness of the body; Fo $=a \tau_{0} / L^{2}$, Fourier number; $T_{\varepsilon N}=\sum_{i=0}^{N} \varepsilon^{\left.\varepsilon^{i} T_{i}+\varepsilon^{i} \Pi_{i}\right)}$; superscript k, approximation number in the small parameter power series expansion.

LITERATURE CITED

1. A. V. Lykov, Heat and Mass Transfer (Handbook) [in Russian], Energiya, Moscow (1978).
2. N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Vibrations [in Russian], Nauka, Moscow (1974).
3. Yu. A. Mitropol'skii and B. I. Moseenkov, Asymptotic Solution of Partial Differential Equations [in Russian], Naukova Dumka, Kiev (1976).
4. A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansion of the Solutions of Singularly Perturbed Equations [in Russian], Nauka, Moscow (1973).
5. V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker (1971).
6. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).
